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The separation method to evaluate the conductivity of plane f igures is extended to the case of bound- 
a ry  conditions of the third kind. Examples are  presented for the application of this method. 

A method is descr ibed in [1] for the evaluation of conductivity in plane figures with isothermal  bound- 
aries;  this method is based on the separat ion of these f igures by means of isothermal and adiabatic lines. 
Later  on we will examine the more general  case in which boundary conditions of the third kind are specified 
for the boundaries of the figure. 

F i r s t  of all, let us reduce the problem to some thermal-conduct iv i ty  case for a figure with isothermal  
boundaries.  It is most natural to replace the thermal  hea t - t r ans fe r  res is tance  by the res is tance  of a thin 
film adhering to the boundary. The outside boundary of the film should be regarded as isothermal,  the r e -  
sistance across  the film should be specified and finite, and the res is tance  along the film must be infinitely 
large.  This is the general ly accepted model. Let us introduce one more equivalent t ransformat ion  of the 
model to achieve a uniform figure.  We will replace the film with a "rake" of the basic mater ia l  of the figure 
so that the film element - of infinitesimally small  length dl - changes into a rectangle of width dl and height 
k / a  (see Fig, la). The external base of the rectangle will be treated as the isothermal boundary, and the 
sides will be regarded as adiabatic boundaries.  Because of this last condition, we satisfy the requirement  
for infinitely great  thermal  res i s tance  along the "rake."  The adjacent rectangles  may abut each other, but 
this should have no effect on their  overall  conductivity, i.e., the coincident segments of the surfaces  on ad- 
jacent rectangles  must be treated as if they were two- layered (see Fig. lb). 

The basic theorem with regard  to the separat ion of plane figures [1] and the corresponding method of 
evaluating conductivity are  appl [cable to the figure derived in this manner. We find the upper bound by draw lag the 
isothermal  line of separat ion along the inside boundary of the "rake,"  i.e., a longthe outside boundary of the or igi -  
nal figure. Then, by the definition of conductivity and according to cer tain famil iar  rules of addition for ser ies  
and paral le l -connected res i s tances ,  we have 

- z~--Y < ~ + ~ -  a~t~ (1) 

Here Q is the heat flow per unit length of the body whose la teral  eros s section is a specified plane figure. Formula  
(1) is well known; however, it is general ly not s t ressed  in the l i terature  that it always yields an exaggerated result .  

For  the lower bound of the conductivity II a we have to separate the equivalent figure into strips by 
means of adiabatic lines, extending these to the boundaries of the original figure, and then we have to sum 
the conductivities of these strips.  Near the boundaries of the original f igure the strips change into the teeth 
of a "rake,"  of which we spoke ear l ie r .  As an example, let us find the bound II a for a rectangular  t rapezoid 
for which the heat t r ans fe r  is accomplished through the base, with the sides serving as the adiabatic bound- 
aries.  The lines of separat ion are  drawn prec ise ly  as in [1]. For  the e lementary  str ip inequality (1) changes 
into an equality, and here we should note that l l ,  II, and l 2 must be replaced,  respect ively,  by dl 1 = da, dlI, 
and d/2 = db. Using this equality and cer tain geometr ic  relat ionships,  we find 

H~ > ;~ cos 2 ~ ~, cos~p 
%a ctg ~ + In -4- ab b ctg---~ 

0 

Sergo Ordzhonikidze Polytechnic institute, Novocherkassk.  Translated f rom Inzhenerno-Fiz icheski i  
Zhurnai, Vol. 16, No. 2, pp. 338-341, February ,  1969, Original ar t icle  submitted April 4, 1968. 

I �9 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

231 



c 

Fig.  1. T h e r m a l - c o n d u c t i v i t y  models  fo r  
the heat  t r a n s f e r  at the boundar i e s  of 
the f igure  (the boundary  of the or ig ina l  
f igure  is shown by the dashed line) : a) 
in the f o r m  of a " rake"  on a r e c t i l i n e a r  
boundary;  b) in the f o r m  of a " rake"  at 
a c u r v i l i n e a r  boundary;  c) a model  of an 
addit ional  l a y e r .  

The in tegra t ion  va r i ab le  ~P denotes  the angle fo rmed  by the 
s t r a igh t  l ine of s epa ra t ion  with the s m a l l e r  s ide of the t r a p -  
ezoid.  In t roducing  the notat ions m = In (b /a )  and n = )~ 
tan  f i ( 1 / a a a  + 1/abb)  and integrat ing,  we find the fol lowing 
bound fo r  the conduct iv i ty  of a r e c t a n g u l a r  t r apezo id :  

1 arctg tg~ 
> + n) + n" (2) 

As a a ~  ~ and a b  ~ `~ (n = 0) it fol lows f r o m  f o r m u l a  (2) 
that  

ln~b_ b '  
a 

i .e . ,  the convent ional  bound for  a r e c t a n g u l a r  t r apezo id  with 
i s o t h e r m a l  b a s e s  [1]. When a = b (m = 0) f o r m u l a  (2) y ie lds  

- n - C  + " 

In the las t  e x p r e s s i o n ,  we have r e p l a c e d  the > with an equal i ty  sign, s ince f o r m u l a  (1) yie lds  p r e c i s e l y  the 
s a m e  value of H a and it is t h e r e f o r e  exact .  

Let  us c o n s i d e r  another  example  which pe r t a ins  to the case  of a "tube in a semi - in f in i t e  b lock ."  The 
c o r r e s p o n d i n g  plane f igure  has only one of its bounda r i e s  in the f o r m  of a c i rc le  of rad ius  r ,  while the o the r  
boundary  is in the f o r m  of a s t r a igh t  line whose  d is tance  f r o m  the cen te r  of the c i r c l e  is denoted h. If the 
boundar i e s  of the f igure  a re  i so the rma l ,  the p rob l em of de t e rmin ing  the conduct iv i t ies  and the t e m p e r a t u r e  
f ields admit  of an exac t  ana ly t ica l  solution,  e .g. ,  by  means  of a confo rmal  mapping  of this f igure  in a c o n -  
cen t r i c  c i r c l e  by means  of the funct ion w = 1/z .  The f o r m u l a  fo r  the conduct iv i ty  [2] has  the f o r m  

2n 
I I - - 1 ~ -  ( ~=~1 ~- V~I~-I ;  ~1= ~ - t "  (3) 

F o r  bounda ry  condi t ions  of the th i rd  kind no exact  solut ion is ye t  poss ib le .  The lower  bound for  the conduc-  
t iv i ty  of the f igure  under  these  condi t ions  can be found by s epa ra t i ng  an equivalent  f igure  by means  of ad ia -  
bat ic  l ines  which,  within the conf ines  of the or ig ina l  f igure ,  coincide with its adiabat ic  cu rve s ,  plotted under  
the condit ion that  the boundar ie s  a r e  i so the rma l .  In this  m a n n e r  we de r ived  the f o r m u l a  

! 

I I ~ > 2 n  ln~ § arr( ~ 1} + In (4) 

We can s e e . i m m e d i a t e l y  that  as  a r ~ ~ and a l ~ ~ (the i s o t h e r m a l  boundar ies )  e x p r e s s i o n  (4) changes  into 
Eq. (3). When ~ = ~ = 1 (the c i r c l e  in contac t  with the s t r a igh t - l i ne  boundary)  e x p r e s s i o n  (4) b e c o m e s  

I 

H ~ > 2 ~  2 - t - - ~ j  - ~  + 

Le t  us work  on the upper  bound of 17 s fo r  the f igure  under  cons idera t ion .  It would be wrong  to use  
f o r m u l a  (1) at this  point, s ince  one of the t e r m s  in the denomina to r  - r e l a t ing  to the r e c t i l i n e a r  boundary  
( X / a  l l )  - van i shes .  The r e s i s t a n c e  of the " r ake"  adjoining the r e c t i l i n e a r  boundary  is au tomat i ca l ly  e l i m -  
inated in this  ca se  and the bound is found to be somewha t  too approx imate .  In th is  and s i m i l a r  cases ,  i .e. ,  
with an infinite r e c t i l i n e a r  boundary ,  f o r  the approx ima te  ca lcu la t ion  of II a the l i t e r a tu re  [2] r e c o m m e n d s  
the method of the  "addit ional  l a y e r . "  However ,  in the l i t e r a t u r e  s o u r c e s  known to us t he re  is no indicat ion 
as to the bound fo r  H a that  r e s u l t s  f r o m  this method,  i .e. ,  whe the r  the upper  o r  the lower  bound. To r e -  
spond to  this  quest ion,  let  us c o m p a r e  the accep ted  model  f o r  the b o u n d a r y  condi t ions  of the th i rd  kind (see 
Fig.  la) with the model  of the addit ional  l a y e r  (see Fig.  lc) .  Accord ing  to the fundamenta l  pos i t ion  of the 
s epa ra t ion  method [1], t r a n s i t i ons  f r o m  model  (c) to model  (a) mus t  lead to a reduc t ion  in conduct ivi ty .  
Consequent ly ,  the a dd i t i ona l - l a ye r  method at a r e c t i l i n e a r  boundary  yie lds  an upper  bound fo r  I I a .  
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Using separat ion by means of an isothermal  line on a c i rcu la r  boundary for the figure being investi-  
gated, in combination with the additional layer  at the rec t i l inear  boundary, in conjunction with (1) and (3) 
we find 

- 

art 

The right-hand member  of this express ion coincides with the relat ionship given in the handbook [2]. 

The conclusion to the effect that the additional layer  affects II a is also valid for a nonrect i l inear  con- 
vex boundary. Here we should use a method of separat ion with an isothermal  line, or the method of the 
additional layer,  depending on which bound will be better ,  i.e., which bound will yield a smal le r  value for 
IIo~. With a concave boundary, the nature of the bound given by the method of the additional layer  is inde- 
terminate ,  and the use of this method is not recommended.  We are dealing here  with the fact that in chang- 
ing f rom the "rake" to the additional layer ,  on the one hand, the conductivity is increased because there 
are no adiabatic boundaries between the teeth, while on the other hand, the conductivity is reduced because 
of the partial  contact between the adjacent teeth. 

N O T A T I O N  

l is the length of the figure boundary at which the heat t r ans fe r  takes place; 
is the thermal  conductivity; 
is the hea t - t r ans fe r  coefficient (the subscr ipts  with the ~ correspond to the designation of the bound- 
a ry  for which the hea t - t r ans fe r  coefficient is specified); 

H a is the conductivity of the plane figure under boundary conditions of the third kind; 
1] is the conductivity of the plane figure with isothermal  boundaries;  
Q is the heat flow; 
At is the tempera ture  difference for  the media flushing the boundaries of the figure; 
a, b are,  respect ively,  the base lengths for the rec tangular  t rapezoid (b > a); 
fl is the angle formed by the sides of the rec tangular  trapezoid; 

is a variable angle; 
r is the radius of the c i rcu la r  boundary; 
h is the distance f rom the rec t i l inear  boundary to the center  of the c i rcu la r  boundary; 
w, z are  complex variables;  
~?, ~ are  dimensionless  pa ramete r s .  

i. 

2. 
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