EVALUATING THE CONDUCTIVITY OF PLANE FIGURES
UNDER BOUNDARY CONDITIONS OF THE THIRD KIND

V. 8. Novopavlovskil UDC 536.212

The separation method to evaluate the conductivity of plane figures is extended tothe case of bound-
ary conditions of the third kind, Examples are presented for the application of this method.

A method is described in [1] for the evaluation of conductivity in plane figures with isothermal bound-~
aries; this method is based on the separation of these figures by means of isothermal and adiabatic lines.
Later on we will examine the more general case in which boundary conditions of the third kind are specified
for the boundaries of the figure. ‘

First of all,let us reduce the problem to some thermal-conductivity case for a figure with isothermal
boundaries. It is most natural to replace the thermal heat-transfer resistance by the resistance of a thin
film adhering to the boundary. The outside boundary of the film should be regarded as isothermal, the re-
sistance across the film should be specified and finite, and the resistance along the film must be infinitely
large. This is the generally accepted model. Let us introduce one more equivalent transformation of the
model to achieve a uniform figure. We will replace the film with a "rake" of the basic material of the figure
so that the film element — of infinitesimally small length d/ — changes into a rectangle of width di and height
x/a (see Fig.1a). The external base of the rectangle will be treated as the isothermal boundary, and the
sides will be regarded as adiabatic boundaries. Because of this last condition, we satisfy the requirement
for infinitely great thermal resistance along the "rake.” The adjacent rectangles may abut each other, but
this should have no effect on their overall conductivity, i.e., the coincident segments of the surfaces on ad-
jacent rectangies must be treated as if they were two-layered (see Fig. 1b).

The basic theorem with regard to the separation of plane figures [1] and the corresponding method of
evaluating conductivity are applicable tothe figure derived inthis manner. We find the upper bound by drawing the
isothermal line of separation along the inside boundary of the "rake," i.e., alongthe outside boundary of the origi-
nal figure. Then, bythe definition of conductivity and accordingto certainfamiliar rules of addition for series
and parallel-connected resistances, we have
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Here Q is the heat flow per unit length of the body whose lateral cross sectionis a specified plane figure. Formula
(1) is well known; however, it is generally not stressed in the literature that it always yields an exaggerated result.

For the lower bound of the conductivity I, we have to separate the equivalent figure into strips by
means of adiabatic lines, extending these to the boundaries of the original figure, and then we have to sum
the conductivities of these strips. Near the boundaries of the original figure the strips change into the teeth
of a "rake," of which we spoke earlier. As an example, let us find the bound I, for a rectangular trapezoid
for which the heat transfer is accomplished through the base, with the sides serving as the adiabatic bound-
aries. The lines of separation are drawn precisely as in [1]. For the elementary strip inequality (1) changes
into an equality, and here we should note that Iy, II, and I, must be replaced, respectively, by dZ; = da, d1I,
and d7, =db. Using this equality and certain geometric relationships, we find
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The integration variable @ denotes the angle formed by the

o straight line of separation with the smaller side of the trap-
ezoid, Introducing the notations m =1In(b/a) and n = A

tan g(1/cga + 1/ay,b) and integrating, we find the following

" 7 bound for the conductivity of a rectangular trapezoid:
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Fig.1. Thermal-conductivity models for B
the heat transfer at the boundaries of n, > | b
the figure (the boundary of the original e

figure is shown by the dashed line): a)

in the form of a "rake" on a rectilinear
boundary; b) in the form of a "rake" at
a curvilinear boundary; c¢) a model of an tg B / i 1
additional layer, I, = = a/ A (*" + —) .

i.e., the conventional bound for a rectangular trapezoid with
isothermal bases [1]. When a =b (m = 0) formula (2) yields

“ a, a,
In the last expression, we have replaced the > with an equality sign, since formula (1) yields precisely the
same value of II, and it is therefore exact.

Let us consider another example which pertains to the case of a "tube in a semi-infinite block." The
corresponding plane figure has only one of its boundaries in the form of a circle of radius r, while the other
boundary is in the form of a straight line whose distance from the center of the circle is denoted h. If the
houndaries of the figure are isothermal, the problem of determining the conductivities and the temperature
fields admit of an exact analytical solution, e.g., by means of a conformal mapping of this figure in a con-
centric circle by means of the function w = 1/z. The formula for the conductivity [2] has the form
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For boundary conditions of the third kind no exact solution is yet possible. The lower bound for the conduc-
tivity of the figure under these conditions can be found by separating an equivalent figure by means of adia-
batic lines which, within the confines of the original figure, coincide with its adiabatic curves, plotted under
the condition that the boundaries are isothermal. In this manner we derived the formula
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We can see.immediately that as oy —« and o — (the isothermal boundaries) expression (4) changes into
Eq. (3). When 1 = £ =1 (the circle in contact with the straight-line boundary) expression (4) becomes
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Let us work on the upper bound of 11, for the figure under consideration. It would be wrong to use
formula (1) at this point, since one of the terms in the denominator — relating to the rectilinear bourdary
(A/al 1) — vanishes. The resistance of the "rake" adjoining the rectilinear boundary is automatically elim-
inated in this case and the bound is found to be somewhat too approximate. In this and similar cases, i.e.,
with an infinite rectilinear boundary, for the approximate calculation of Il the literature [2] recommends
the method of the "additional layer." However, in the literature sources known to us there is no indication
as to the bound for II, that results frorm this method, i.e., whether the upper or the lower bound. To re-
spond to this question, let us compare the accepted model for the boundary conditions of the third kind (see
Fig. 1a) with the model of the additional layer (see Fig.1c). According to the fundamental position of the
separation method [1], transitions from model (c) to model (a) must lead to a reduction in conductivity.
Consequently, the additional-layer method at a rectilinear boundary yields an upper bound for 1I,.
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Using separation by means of an isothermal line on a circular boundary for the figure being investi-
gated, in combination with the additional layer at the rectilinear boundary, in conjunction with (1) and (3)

we find
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The right-hand member of this expression coincides with the relationship given in the handbook [2].

The conclusion to the effect that the additional layer affects 1II,, is also valid for a nonrectilinear con-
vex boundary. Here we should use a method of separation with an isothermal line, or the method of the
additional layer, depending on which bound will be better, i.e., which bound will yield a smaller value for
1l,. With a concave boundary, the nature of the bound given by the method of the additional layer is inde-
terminate, and the use of this method is not recommended. We are dealing here with the fact that in chang-
ing from the "rake" to the additional layer, on the one hand, the conductivity is increased because there
are no adiabatic boundaries between the teeth, while on the other hand, the conductivity is reduced because
of the partial contact between the adjacent teeth.

NOTATION

is the length of the figure boundary at which the heat transfer takes place;

A is the thermal conductivity;

o is the heat-transfer coefficient (the subscripts with the o correspond to the designation of the bound-
ary for which the heat-transfer coefficient is specified);

is the conductivity of the plane figure under boundary conditions of the third kind;
is the conductivity of the plane figure with isothermal boundaries;

is the heat flow;

is the temperature difference for the media flushing the boundaries of the figure;

b are, respectively, the base lengths for the rectangular trapezoid (b > a);

is the angle formed by the sides of the rectangular trapezoid;

is a variable angle;

is the radius of the circular boundary;

is the distance from the rectilinear boundary to the center of the circular boundary;
are complex variables;

are dimensionless parameters.

25"1%@&2(@&5: =~

=3
RAA

LITERATURE CITED

1. V. S. Novopavlovskii, Inzh.-Fiz. Zh., 14, No. 2 (1968). ,
2. 8. 8. Kutateladze and V. M. Borishanskii, Heat-Transfer Handbook [in Russian}, GEI, Moscow —Lenin-
grad (1959).

233



